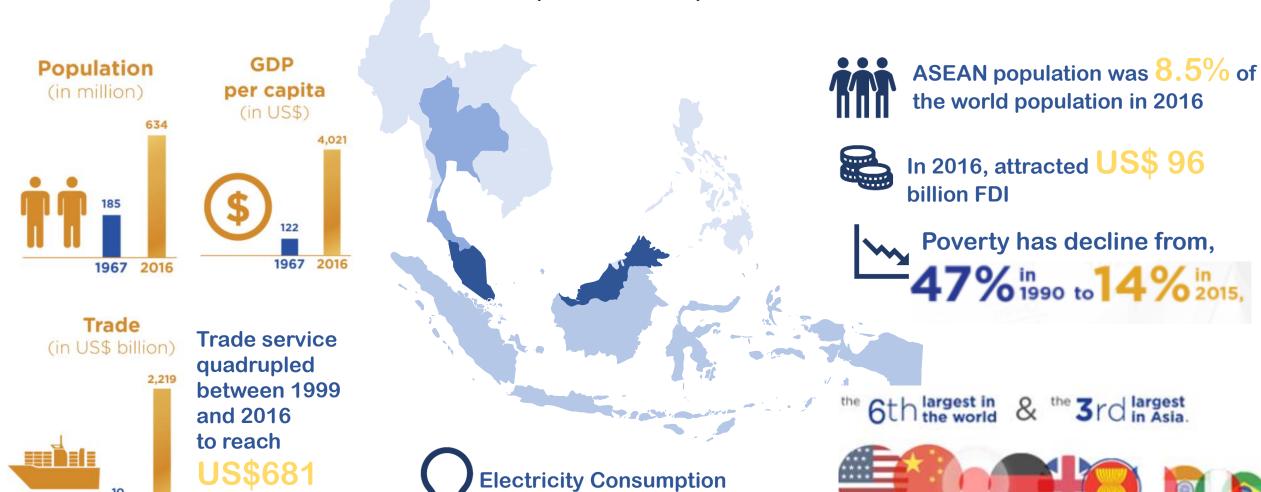
The need for RE and new energy technologies for small scale-grids in ASEAN

Singapore International Energy Week 2017 27 October 2017

Presented by:

Beni Suryadi, Acting Manager of Policy, Research, and Analysis ASEAN Center for Energy


Disclaimer

The views, opinions, and information expressed in this presentation were compiled from sources believed to be reliable for information and sharing purposes only, and are solely those of the presenter; do not necessarily reflect the views and opinions of the ASEAN Centre for Energy (ACE) and/or the ASEAN Member States. Any use of this presentation's content should be by ACE's permission.

ASEAN – Community of Opportunities

One Community for Sustainable Energy

50 years Journey of ASEAN

kWh/cap

billion

ASEAN Electrification Ratio by 2015

ASEAN Off-grid Demand

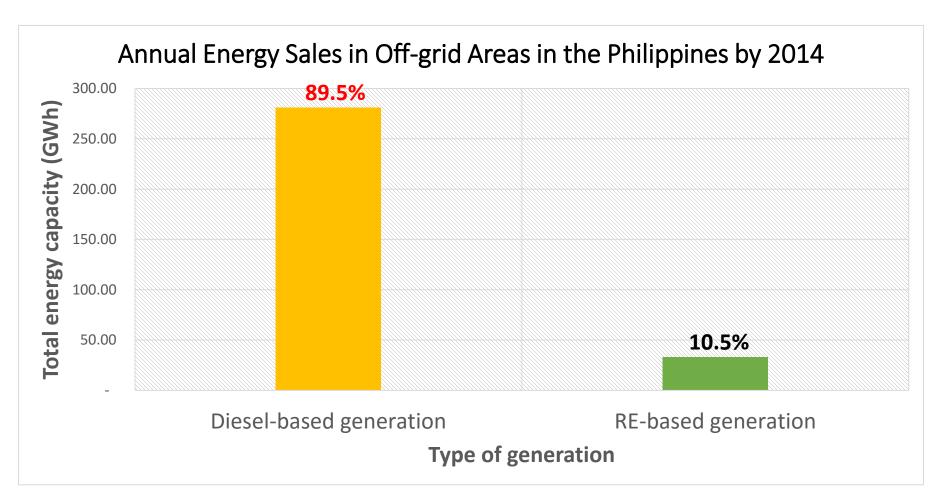
107 million people live without electricity

• Huge part of it lives in remote area

ASEAN covers wide area & islands

- 13,000 inhabited island
- Indonesia & Philippine owns big islanded communities

Off-grid generation is still dominated by diesel-based plant


ASEAN Off-grid Electrification Status

Capacity of decentralized diesel-generator in Indonesia

One Community for Sustainable Energy

ASEAN Off-grid Electrification Status

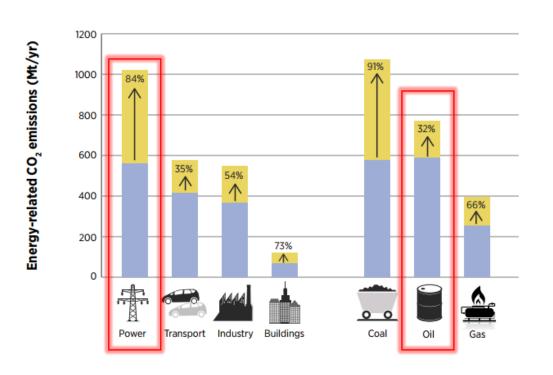
Data source: NPC-SPUG 2017

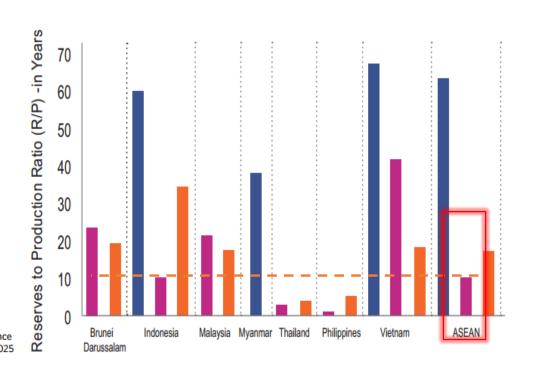
True cost of Diesel generation by NPC-SPUG vs Effective Selling rate in 2012

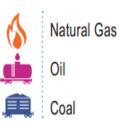
NPC SPUG Area	Municipality	True Cost of Diesel (pesos per kWh)	Effective Selling Rate (pesos per kWh)	Difference	
ROMBLON	Alad	28.03	6.59	21.44	
CATANDUANES	Palumbanes	21.56	6.59	14.97	
MINDORO	Cabra	19.8	5.75	14.05	
LEYTE	Caluya	18.89	6.84	12.05	
TAWI-TAWI	Manuk Mankaw	17.6	6.27	11.33	
KALINGA	Lubuagan	16.52	5.76	10.76	
DAVAO DEL NORTE	Talicud	16.87	6.27	10.6	
SIQUIJOR	Siquijor	15.49	6.07	9.42	
CEBU	Camotes	15.35	6.07	9.28	
PALAWAN	El Nido	14.93	6.59	8.34	
BATANES	Basco	14.04	6.59	7.45	
QUEZON	Polilio	13.92	6.59	7.33	
BASILAN	Basilan	13.7	6.58	7.12	

- Diesel generation has volatile fuel cost and high transportation cost
- Causing curtailment of service hours (4-12 hours supply only)
- In some remote area, fuel can exceed USD
 1.2 per liter, 1.5x than Philippines average
- **10.32 billion** PHP is estimated to cover projected fuel and transportation cost in 2017 to meet off-grid demand
- Huge subsidies disbursed for covering fuel and transport cost

Source: GIZ, SPUG-NPC (2012



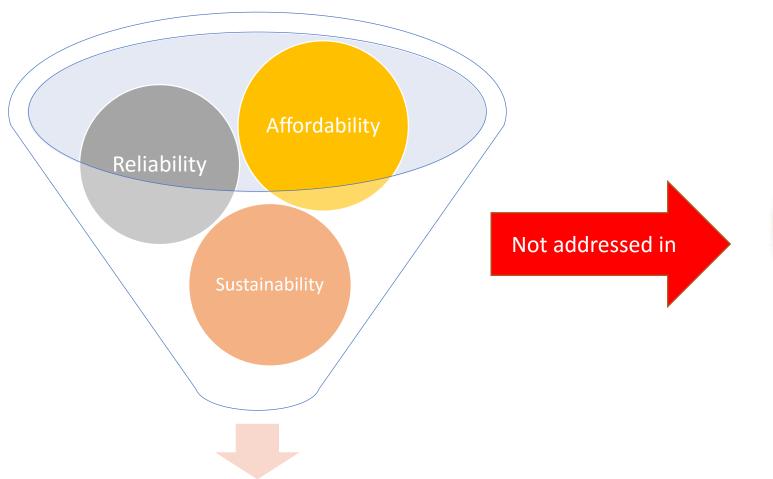

Off-grid Generation Issues using fossil-fuel based generation


2014

ASEAN's Energy-related CO2 Emission by fuel & sector

Reserve to Production ratio of ASEAN's Fossil fuels

Off-grid Generation Issues using fossil-fuel based generation


Classification of Mini-grid per hours of Generation in Philippines

Service Hours of Mini Grids	Mini Grid Areas (Numbers)
6-8 hours	149
10-15 hours	36
16-20 hours	11
24 hours	25
Total	221

Source: NPC-SPUC,2011

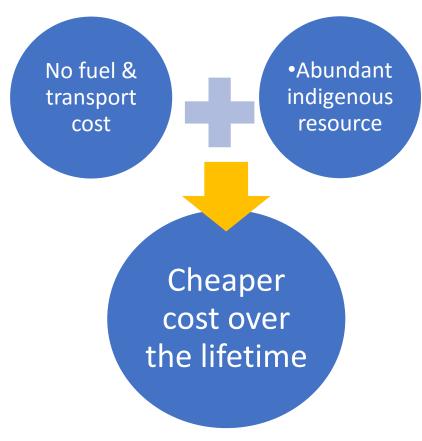
Issues for Off-grid Generation

Apply in On-grid generation,

but Off-grid?

Common diesel-plant generation in off-grid areas

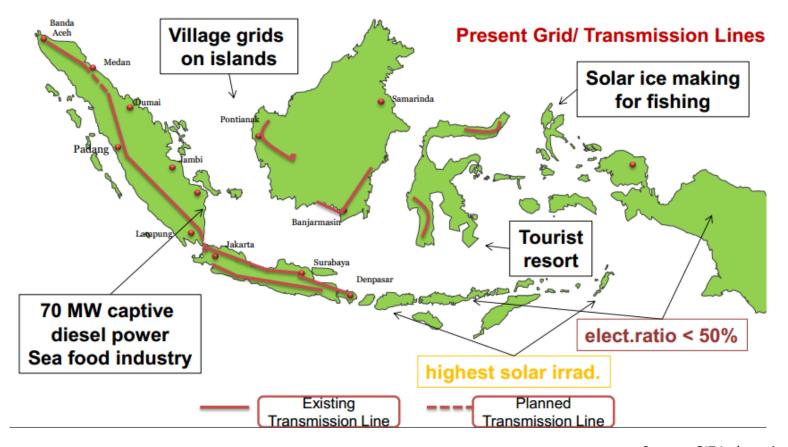
Converted to


RE & new technologies

RE & New Technologies for Off-grid Generation

Levelized Cost of Energy Generation Technology

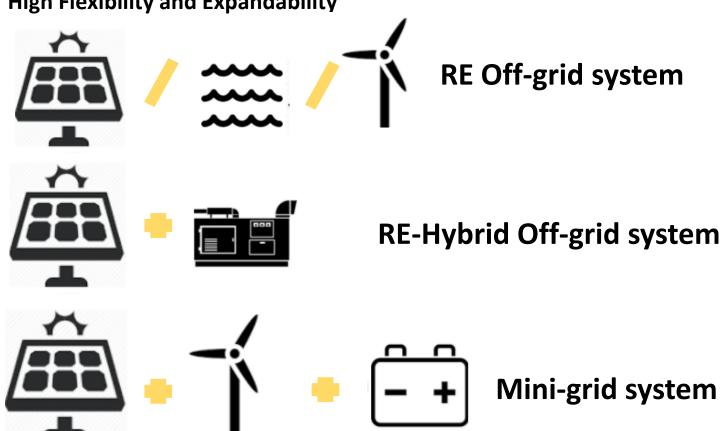
		Levelized	Carbon	State of	Location		Dispatch					
		Cost of Energy	Neutral/Rec Potential	Technology	Distributed	Centralized	Geography	Intermittent	Peaking	Load- Following	Base- load	L
ive Energy	Solar PV	\$46 - 222	~	Commercial	~	~	Universal	~	~			
	Solar Thermal	\$199 - 182	V	Commercial		~	Varies	~	~	~		
	Fuel Cell	\$106 - 167	?	Emerging/ Commercial	~		Universal				~	
		\$76 - 89	?	Emerging/ Commercial	~		Universal				V	
Alterna	Geothermal	\$79 - 117	V	Mature		~	Varies				~	
Alle	Biomass Direct	\$77 - 110	~	Mature		~	Universal			~	~	
	Onshore Wind	\$32 - 62	~	Mature		~	Varies	~				
ergy												
	Diesel Reciprocating Engine	\$212 - 281	×	Mature	~		Universal	~	~	~	~	
	Natural Gas Reciprocating Engine	\$68 - 101	х	Mature	~		Universal	~	~	~	~	
ᇤ	Gas Peaking	\$165 - 217	х	Mature	~	~	Universal		~	~		
Conventional Energy	IGCC	\$94 - 210	×	Emerging		~	Co-located or rural				~	
	Nuclear	\$97 - 136	~	Mature/ Emerging		~	Co-located or rural				~	
	Coal	\$60 - 143		Mature		~	Co-located or rural				~	
	Gas Combined Cycle	\$48 - 78	×	Mature	~	~	Universal			~	~	



Source: Electricity Sector Opportunity in the Philippines – IEEFA,2017

RE & New Technologies for Off-grid Generation

Huge RE & New technology potential in Off-grid areas



Source: GIZ Indonesia, 2013

RE & New Technologies for Off-grid Generation

High Flexibility and Expandability

More Sustainable & Reliable

Opportunities and Challenges

Opportunities

- Abundant RE and new technology resource to be utilized
- Huge off-grid market potential to be untapped
- Commitment to increase RE share in the region

Challenges

- High investment cost for RE & new technologies
- Capability in developing RE & new technologies
- Lack of financing support for RE
 new technologies in off-grid electrification
- No stringent target & rule for RE in off-grid electrification

Conclusion

- There are huge opportunities of utilizing RE & new technologies for fulfilling offgrid demand in islanded communities in ASEAN
- RE & new technologies can be more affordable, reliable, and sustainable solution than fuel-based generation to provide electricity in off-grid areas
- ASEAN should support RE & new technologies for off-grid electrification by establishing target, supporting policies and financing scheme.
- By using RE & new technologies for off-grid electrification it can fulfill off-grid demand while help achieving regional RE target of 23% energy mix in 2025

Thank you.

For more information, please visit our website: www.aseanenergy.org or email us at secretariat@aseanenergy.org

