

METROLOGY INFRASTRUCTURE FOR ASEAN CROSS-BORDER POWER INTEGRATION AND SYSTEM RESILIENCE

Dr JING Tao

Principal Metrologist, Electrical Metrology National Metrology Centre, A*STAR

SIEW UNESCAP ROUNDTABLE ON SUSTAINABLE CONNECTIVITY IN ASIA-PACIFIC 30 Oct 2020

ASEAN Installed Power Capacity Structure

- 75 % by fossil fuels
 - 30 % coal
 - 8 % oil
 - 37 % natural gas
- In the Paris compatible scenario, fossil fuels need to be substantially reduced to 30 % by 2040
- Rich of clean energies, but not evenly distributed
- cross-border transmission is needed to make their full potential and efficient use.

Clean Resources in ASEAN, GW	Biomass	37.7
	Geothermal	33.29
	Hydro	240.97
	Solar	3.15-5.55 (kWh/m2/day)
	Tidal	219.2
	Wind	> 87

ACE etc, Energy interconnection in ASEAN for sustain. and resilient societies, 2018 H. Nishimura, SETA2020

ASEAN Grid Interconnection Prospect in 2035

*ACE etc, Energy interconnection in ASEAN for sustainable and resilient societies, 2018

To consider

Planning and

01001 1001

*

Technical Considerations for Resilient Cross-border Grids

- High-precision sensor systems, for simultaneous data acquisitions and transmission among grids
- Large grid simulation and analysis for comprehensive condition monitoring and predicting, and speedy switching to ensure grids resilience and prevent outages
- □ Therefore, an integrated operational platform that performs
 - real-time analysis and speedy response
 - system status monitoring and predictive maintenance estimates
 - SI-traceable metering at all necessary nodes
- Regulatory framework on use and operation of interconnected grids and energy metering.

Metrological Strategy to Ensure Grid Resilience

- A metrological strategy, combined with IOT, ICT, Big Data technologies for the observability and controllability of interconnected grids.
- A measurement framework for improving and using **Phasor Measurement Units** (PMU), and for maintaining their reliability and accuracy.

Measurement Development for Data Acquisition

- Tools for loss measurements at various apparatus and locations under high voltage and current (HV, HC) for localizing disturbance so to ensure transmission efficiency and grid stability
- Improvements of HV and HC measurement accuracy for precise grid management and metering.
- Tools to determine **power quality** and its propagation, to assess and suppress its effects on grid stability.
- Methods and systems for calibrations and verifications

Data Metrology for Data Quality in Processing and Decision Making

- To evaluate process and analyze data uncertainty
- To develop and validate algorithms & software for on-line performance assurance of sensors and their remote calibrations
- To establish data traceability chain & system.

CREATING GROWTH, ENHANCING LIVES

(1001) 1001

THANK YOU

www.a-star.edu.sg