

MEDIA RELEASE

30 October 2018

EMA in S\$10 million Partnership Renewal with Sembcorp for R&D and Manpower Development

Announced today by Minister for Trade & Industry Chan Chun Sing at the Singapore International Energy Week (SIEW) 2018, the Energy Market Authority (EMA) and Sembcorp Industries (Sembcorp) have renewed a S\$10 million partnership. This will involve initiatives to catalyse Research and Development (R&D) and to develop new capabilities in Singapore's energy sector.

2. The S\$10 million renewal this year will take EMA and Sembcorp's joint commitment to over S\$20 million to date. The refreshed Sembcorp-EMA Energy Technology Partnership (SEETP) will allow Sembcorp and EMA to encourage the translation and commercialisation of R&D solutions in areas of strategic interest to Singapore. Researchers and companies will have the opportunity to develop new technologies that could potentially be test-bedded at Sembcorp's facilities. They can also leverage on Sembcorp's strong business networks for commercialisation.

3. Thus far, S\$10 million in grants have been awarded under the SEETP to three R&D projects, of which two teams are from A*STAR's Institute for Infocomm Research (I²R), and one team from the Nanyang Technological University, Singapore (NTU Singapore). Announced by Minister Chan today, the awardees will develop solutions to:

- i. Enhance the efficiency of pipeline inspections via autonomous vehicles and automation (I²R);
- ii. Recover low-grade waste heat and enhance energy efficiency at industrial plants (NTU Singapore); and
- iii. Automate plant boiler inspections through online condition monitoring and data science (I²R).

(Details of the projects are in the ANNEX.)

4. Research teams for the three projects will comprise local small and medium enterprises, such as optical microspectroscopy solutions provider TechnoSpex and aerospace precision engineering firm Flare Dynamics. These companies will, respectively,

help to develop local capabilities in real-time plant boiler inspection and the use of autonomous vehicles to monitor pipelines.

5. Aside from supporting R&D through the SEETP, there is also a need to build a pipeline of future-ready talent to support the evolving needs of the energy sector. EMA and Sembcorp are working together to attract young people to explore careers in the energy sector. One avenue is through the Sembcorp-EMA Energy Challenge (SEEC). This incorporates an energy-related gaming competition, learning journeys and internship opportunities for students from Institutes of Higher Learning (IHLs).

6. The SEEC competition aims to give participants a taste of solving real-world issues that power sector professionals face in the course of their work. The experiential learning journeys take students to sites generally inaccessible to the public, such as the Pulau Ubin Micro-grid Test-bed and Sembcorp's energy facilities. These visits will allow students to interact with engineering professionals and gain a richer understanding of the energy sector. Over the past three years, more than 300 students from various IHLs have benefited from the SEEC.

7. On the significance of the partnership, EMA's Chief Executive, Mr Ngiam Shih Chun, said: "Our partnership with Sembcorp will help to catalyse R&D innovations to enhance the resilience of Singapore's energy sector. To make this possible, we are also working to nurture a future-ready and competent workforce to keep the lights on for Singapore."

8. Matthew Friedman, Chief Digital Officer at Sembcorp Industries, said: "As a homegrown energy player with over two decades in Singapore's power and utilities market, Sembcorp is thrilled to extend our partnership with EMA in supporting R&D, and developing a new generation of future energy professionals. Our joint initiatives with EMA are in line with Sembcorp's belief in technology and innovation, attracting good talent and giving back to our community. They will also help to support the long-term growth of Singapore's energy sector."

-- End --

No.	Title	Description	Project Team
1.	An Online	Current situation: The	Principal Investigator:
	Process	current method of inspecting	Dr Emily Hao Jianzhong,
	Monitoring	boiler tubes for defects	Institute for Infocomm
	Scheme to	requires significant	Research (I ² R)
	Improve the	downtime, which represents	
	Accuracy of the	substantial lost revenue.	Co-Investigators:
	Tube Boiler		 Dr Li Xiaoli, I²R
	Inspection	Aim: To develop an online	 Dr Xiang Shili, I²R
	Process.	condition monitoring system	 Dr Wang Yixin, I²R
		that will allow for automated	 Dr Jiang Wenyu, I²R
		plant boiler inspections. The	Assoc Prof Steven Hoi,
		system is capable of	Singapore
		detecting the onset of boiler	Management University
		defects by employing	
		innovative sensors, data	
		analytics, and machine	Collaborator:
		learning technologies. The	Dr. Eddie Tan K M,
		aim of the system is to	TechnoSpex Pte Ltd
		reduce inspection time and	-
		hence, overall downtime of	
		the boiler.	

ABOUT R&D PROJECTS AWARDED GRANTS UNDER THE SEETP

2.	Automated	Current situation:	Principal Investigator:
	Pipeline	Aboveground pipeline	Dr Zheng Jinghong, I ² R
	Monitoring with	condition monitoring and	
	Unmanned	inspection currently requires	Co-Investigators:
	Aerial Imaging	considerable manpower and	 Mr Lu Weiyao, Flare
	System	capital	Dynamics Pte Ltd
			Mr Kevin Young, DNV
		Aim: To develop an	GL
		autonomous unmanned	
		aerial vehicle (UAV),	
		equipped with video	
		cameras and sensors,	
		capable of performing	
		automated visual inspection	
		and leak detection for	
		pipelines. The aim is for the	
		system to cover large areas	
		with minimal manpower,	
		thus significantly reducing	
		operational costs.	

3.	Development of	Current situation: Many	Principal Investigator:
	Absorption	industry processes	Prof Yang Chun Charles,
	Chiller System	consume enormous	Nanyang Technological
	with Optimised	amounts of energy and	University, Singapore (NTU
	Heat Exchange	release large amounts of	Singapore)
	Network for	waste heat. Current heat	
	High Utilisation	recovery systems are often	Co-Investigator:
	of Low Grade	inefficient as a significant	Assoc Prof Tong Yen Wah,
	Waste Heat	amount of useful waste heat	National University of
		is released to the	Singapore
		environment. There are	
		opportunities to harness this	Collaborator:
		low-grade waste heat and	Prof Wang Ruzhu, Shanghai
		convert it into useful	Jiao Tong University
		resources such as electricity	
		and chilled water.	
		Aim: To develop a novel	
		absorption chiller with	
		seawater cooling and other	
		innovative features. The aim	
		of the system is to enhance	
		overall efficiency of an	
		industrial plant by enabling	
		recovery of low-grade waste	
		heat to produce chilled	
		water.	